# DALLAS **VIXI/V**

#### **www.maxim-ic.com**

#### **GENERAL DESCRIPTION**

The DS2422 temperature/datalogger combines the core functions of a fully featured datalogger in a single chip. It includes a temperature sensor, realtime clock (RTC), memory, 1-Wire<sup>®</sup> interface, and serial interface for an analog-to-digital converter (ADC) as well as control circuitry for a charge pump. The ADC and the charge pump are peripherals that can be added to build application-specific dataloggers. Without external ADC, the DS2422 functions as a temperature logger only. The DS2422 measures the temperature and/or reads the ADC at a user-defined rate. A total of 8192 8-bit readings or 4096 16-bit readings taken at equidistant intervals ranging from 1s 273hrs can be stored.

#### **APPLICATIONS**

- Temperature Logging in Cold Chain, Food Safety, and Bio Science
- High-Temperature Logging (Process Monitoring, industrial Temperature Monitoring)
- General-Voltage Datalogging (Pressure, Humidity, Light, Material Stress)

#### **PIN CONFIGURATION**



# **DS2422 1-Wire Temperature/Datalogger with 8kB Datalog Memory**

#### **FEATURES**

- Automatically Wakes Up, Measures Temperature and/or Reads an External ADC and Stores Values in 8kB of Datalog Memory in 8 or 16-Bit Format
- On-Chip Direct-to-Digital Temperature Converter with 8-Bit (0.5°C) or 11-Bit (0.0625°C) Resolution
- Sampling Rate from 1s up to 273hrs
- Programmable Recording Start Delay After Elapsed Time or Upon a Temperature Alarm Trip Point
- Programmable High and Low Trip Points for Temperature and Data Alarms
- Quick Access to Alarmed Devices Through 1-Wire Conditional Search Function
- **512 Bytes of General-Purpose Memory Plus 64** Bytes of Calibration Memory
- **Two-Level Password Protection of all Memory** and Configuration Registers
- Unique Factory-Lasered 64-Bit Registration Number Assures Error-Free Device Selection and Absolute Part Identity
- Built-in Multidrop Controller Ensures Compatibility with Other Dallas Semiconductor 1-Wire Net Products
- Directly Connects to a Single Port Pin of a Microprocessor and Communicates at Up to 15.4kbps at Standard Speed or up to 125kbps in Overdrive Mode
- -40°C to +85°C Operating Range
- 2.8V to 3.6V Single-Supply Battery Operation
- Low Power (1.2µA Standby, 350µA Active)

#### **ORDERING INFORMATION**



*Commands, Registers, and Modes are capitalized for clarity.*

*1-Wire is a registered trademark of Dallas Semiconductor.*

*Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.*

# **ABSOLUTE MAXIMUM RATINGS\***

ALARM, PUMP\_ONZ, SDATA, SCLK, CNVST, VPAD, I/O Voltage to GND ALARM, PUMP\_ONZ, I/O **Combined** Sink Current 20m 20mA<br>
Operating Temperature Range 240°C to +85°C Operating Temperature Range -40°C to +150°C to +150°C to +150°C Junction Temperature +150°C Storage Temperature Range<br>Soldering Temperature

 $-0.3V, +6V$ 

See IPC/JEDEC J-STD-020A

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device.*

# **ELECTRICAL CHARACTERISTICS**







- **Note 1:** System Requirement<br>**Note 2:** Maximum allowable p
- **Note 2:** Maximum allowable pullup resistance is a function of the number of 1-Wire devices in the system and 1-Wire recovery times. The specified value here applies to systems with only one device and with the minimum 1-Wire recovery times. For more heavily loaded systems, an active pullup such as that found in the DS2480B may be required.
- **Note 3:** Capacitance on the data pin could be 800pF when V<sub>PUP</sub> is first applied. If a 2.2k $\Omega$  resistor is used to pull up the data line, 2.5µs after V<sub>PUP</sub> has been applied the parasite capacitance will not affect normal communications.
- **Note 4:** Guaranteed by design, not production tested.
- **Note 5:**  $V_{TL}$ ,  $V_{TH}$  are a function of the internal supply voltage.<br>**Note 6:** Voltage below which, during a falling edge on I/O, a
- **Note 6:** Voltage below which, during a falling edge on I/O, a logic '0' is detected.<br>**Note 7:** The voltage on I/O needs to be less or equal to V<sub>II MAX</sub> whenever the mas
- **Note 7:** The voltage on I/O needs to be less or equal to V<sub>ILMAX</sub> whenever the master drives the line low.<br>**Note 8:** Voltage above which, during a rising edge on I/O, a logic '1' is detected.
- **Note 8:** Voltage above which, during a rising edge on I/O, a logic '1' is detected.
- **Note 9:** After V<sub>TH</sub> is crossed during a rising edge on I/O, the voltage on I/O has to drop by V<sub>HY</sub> to be detected as logic '0'.<br>**Note 10:** The I-V characteristic is linear for voltages less than 1V.
- **Note 10:** The I-V characteristic is linear for voltages less than 1V.<br>**Note 11:** The earliest recognition of a negative edge is possible at

**Note 11:** The earliest recognition of a negative edge is possible at t<sub>REH</sub> after V<sub>TH</sub> has been previously reached.<br>**Note 12:** Highlighted numbers are NOT in compliance with the published iButton standards. See compariso

- **Note 12:** Highlighted numbers are NOT in compliance with the published iButton standards. See comparison table below. **Note 13:** Interval during the negative edge on I/O at the beginning of a Presence Detect pulse between the time at which the voltage is 90% of  $V_{PUP}$  and the time at which the voltage is 10% of  $V_{PUP}$ .
- **Note 14:<br>Note 15:**  $\varepsilon$  represents the time required for the pullup circuitry to pull the voltage on I/O up from  $V_{II}$  to  $V_{TH}$ .
- $\delta$  represents the time required for the pullup circuitry to pull the voltage on I/O up from V<sub>IL</sub> to the input high threshold of the bus master.
- **Note 16:** This is the expected range when using a crystal equivalent to the KDS SN14J (12.5pF).
- **Note 17:** Time to reach 63% of the temperature change; measured at a temperature transition step from +25°C to +85°C.<br>Note 18: A 2-point calibration trim at 3V must be done to achieve the specified accuracy at 3V. An appl
- **Note 18:** A 2-point calibration trim at 3V must be done to achieve the specified accuracy at 3V. An application note is available to help developers perform the calibration by writing the trim registers to properly orient the error curve.
- **Note 19:** The duration is user-programmable from 0ms (code 00h) to 127.5ms (code FFh) with a tolerance of ±0.5ms. See *Delay Register*, address 400h, for details.



<sup>1)</sup> Intentional change, longer recovery time requirement due to modified 1-Wire front end.





"Uncertainty" refers to the uncertainty of the temperature measurement when performing the 2-point calibration trim as described in the application note. These graphs assume 11-bit temperature conversion. The accuracy can be improved further through software correction. See the application note referenced as "Note 18" on the previous page for details.



# **DESCRIPTION**

The DS2422 temperature/data logger combines the core functions of a fully featured data logger in a single chip. It includes a temperature sensor, RTC, memory, 1-Wire interface, and serial interface for an analog-to-digital converter (ADC) as well as control circuitry for a charge pump. The ADC and the charge pump are peripherals that can be added to build application-specific data loggers. Without external ADC, the DS2422 functions as a temperature logger only. The DS2422 measures the temperature and/or reads the ADC at a user-defined rate. A total of 8192 8-bit readings or 4096 16-bit readings taken at equidistant intervals ranging from 1 second to 273 hours can be stored. In addition to this, there are 512 bytes of SRAM for storing application specific information and 64 bytes for calibration data. A mission to collect data can be programmed to begin immediately, after a userdefined delay, or after a temperature alarm. Access to the memory and control functions can be passwordprotected. The DS2422 is configured and communicates with a host computing device through the serial 1-Wire protocol, which requires only a single data lead and a ground return. Every DS2422 is factory-lasered with a guaranteed unique 64-bit registration number that allows for absolute traceability. The extremely low energy consumption in conjunction with its high level of programmability makes the DS2422 the ideal choice for low-cost data loggers that can take millions of measurements from the energy of a single 3V button cell.

# **APPLICATION**

The DS2422 allows the design of data loggers or monitors with a minimum number of components. The simple circuit of Figure 1 can monitor body or room temperature with 0.0625°C resolution. For very high temperaturemonitoring applications, a thermocouple can be connected to the analog-to-digital converter (ADC) through a preamplifier, as shown in Figure 2. The internal temperature sensor of the DS2422 keeps track of the reference temperature, which is needed to accurately convert the voltage reading of the thermocouple into the actual temperature of the monitored object. A less obvious application of the DS2422 is inside of major equipment. Besides the temperature inside the chassis, the serial interface can monitor up to 16 digital signals, which are parallel-clocked into an external shift register by CNVST and then shifted into the DS2422 through the SDATA pin under the control of SCLK. The DS2422 will activate its alarm output if the measured temperature or serial-input data reaches a user-programmed high or low alarm threshold. This alarm then can be used to shut down the equipment and enforce a service call. In contrast to microprocessor-based data loggers, the DS2422 does not require any firmware development. Software for setup and data retrieval through the 1-Wire interface is available for free download from the iButton website (www.ibutton.com). This software also includes drivers for the serial and USB port 1-Wire interfaces of a PC, and routines to access the general-purpose memory for storing application or equipment-specific data files.



**Figure 1. Simple Temperature Logger**

**Figure 2. Temperature and Voltage Logger With Thermocouple**



Note: When using a positive/negative thermocouple, an offset voltage can be utilized through the Ref input of the INA122 amplifier. This voltage shifts the 0V output of the amplifier up the amount equal to the offset voltage allowing negative voltages to be read in the positive range of the MAX1086. This offset voltage may be obtained through a simple resistor divider network (not shown).

**Figure 3. DS2422 Block Diagram**



#### **OVERVIEW**

The block diagram in Figure 3 shows the relationships between the major control and memory sections of the DS2422. The device has six main data components: 1) 64-bit lasered ROM, 2) 256-bit scratchpad, 3) 512-byte general-purpose SRAM, 4) two 256-bit register pages of timekeeping, control, status, and counter registers and passwords, 5) 64 bytes of calibration memory, and 6) 8192 bytes of data-logging memory. Except for the ROM and the scratchpad, all other memory is arranged in a single linear address space. The data-logging memory, counter registers and several other registers are read-only for the user. Both register pages are write-protected while the device is programmed for a mission. The password registers, one for a read password and another one for a read/write password can only be written to, never read.

The hierarchical structure of the 1-Wire protocol is shown in Figure 4. The bus master must first provide one of the eight ROM function commands: 1) Read ROM, 2) Match ROM, 3) Search ROM, 4) Conditional Search ROM, 5) Skip ROM, 6) Overdrive-Skip ROM, 7) Overdrive-Match ROM or 8) Resume. Upon completion of an Overdrive ROM command byte executed at standard speed, the device will enter Overdrive mode, where all subsequent communication occurs at a higher speed. The protocol required for these ROM function commands is described in Figure 14. After a ROM function command is successfully executed, the memory and control functions become accessible and the master may provide any one of the eight available commands. The protocol for these memory and control function commands is described in Figure 12. **All data is read and written least significant bit first.**



#### **PARASITE POWER**

The block diagram (Figure 3) shows the parasite-powered circuitry. This circuitry "steals" power whenever the I/O input is high. I/O provides sufficient power as long as the specified timing and voltage requirements are met. The advantages of parasite power are two-fold: 1) by parasiting off this input, battery power is conserved; and 2) if the battery is exhausted for any reason, the ROM may still be read.

#### **64-BIT LASERED ROM**

Each DS2422 contains a unique ROM code that is 64 bits long. The first 8 bits are a 1-Wire family code. The next 48 bits are a unique serial number. The last 8 bits are a CRC of the first 56 bits. See Figure 5 for details. The 1-Wire CRC is generated using a polynomial generator consisting of a shift register and XOR gates as shown in Figure 6. The polynomial is  $X^8 + X^5 + X^4 + 1$ . Additional information about the Dallas 1-Wire CRC is available in *Application Note 27* and in the *Book of DS19xx iButton Standards*.

The shift register bits are initialized to 0. Then starting with the least significant bit of the family code, one bit at a time is shifted in. After the  $8<sup>th</sup>$  bit of the family code has been entered, then the serial number followed by the temperature range code is entered. After the range code has been entered, the shift register contains the CRC value. Shifting in the 8 bits of CRC returns the shift register to all 0s.

# **Figure 5. 64-Bit Lasered ROM**



#### **Figure 6. 1-Wire CRC Generator**



# **Figure 7. DS2422 Memory Map**



### **MEMORY**

The memory map of the DS2422 is shown in Figure 7. The 512 bytes general-purpose SRAM are located in pages 0 through 15. The various registers to set up and control the device fill page 16 and 17, called Register Pages 1 and 2 (details in Figure 8). Pages 18 and 19 provide storage space for calibration data. They can alternatively be used as extension of the general-purpose memory. The Trim Register Page holds registers that are used to tune the timing of the serial data interface and to trim the on-chip temperature converter. The "datalog" logging memory starts at address 1000h (page 128) and extends over 256 pages. The memory pages 20 to 31 and 33 to 127 are reserved for future extensions. The scratchpad is an additional page that acts as a buffer when writing to the SRAM memory or the register page. The data- and calibration memory can be written at any time. The access type for the two register pages and the Trim Register Page is register-specific and depends on whether the device is programmed for a mission. Figures 8A and 8B show the details. The datalog memory is read-only for the user. It is written solely under supervision of the on-chip control logic. Due to the special behavior of the write access logic (write scratchpad, copy scratchpad) it is recommended to only write full pages at a time. This also applies to all the register pages and the calibration memory. See section *Address Register and Transfer Status* for details.



#### **Figure 8A. DS2422 Register Pages Map**

DS2422



#### **Figure 8B. DS2422 Trim Register Page Map**



**Note:** The first entry in column ACCESS TYPE is valid between missions. The second entry shows the applicable access type while a mission is in progress.

# **TIMEKEEPING AND CALENDAR**

The RTC/alarm and calendar information is accessed by reading/writing the appropriate bytes in the register page, address 200h to 205h. For readings to be valid, all RTC registers must be read sequentially starting at address 0200h. Some of the RTC bits are set to 0. These bits always read 0 regardless of how they are written. The number representation of the RTC registers is BCD format (binary-coded decimal).

#### **Real-Time Clock and RTC Alarm Register Bitmap**



The RTC of the DS2422 can run in either 12-hour or 24-hour mode. Bit 6 of the Hours Register (address 202h) is defined as the 12- or 24-hour mode select bit. When high, the 12-hour mode is selected. In the 12-hour mode, bit 5 is the AM/PM bit with logic 1 being PM. In the 24-hour mode, bit 5 is the 20-hour bit (20 to 23 hours). The CENT bit, bit 7 of the Months Register, can be written by the user. This bit changes its state when the years counter transitions from 99 to 00.

The calendar logic is designed to automatically compensate for leap years. For every year value that is either 00 or a multiple of 4 the device adds a 29<sup>th</sup> of February. This works correctly up to (but not including) the year 2100.

# **SAMPLE RATE**

The content of the Sample Rate Register (addresses 0206h, 0207h) specifies the time elapse (in seconds if EHSS = 1, or minutes if EHSS = 0) between two temperature/data logging events. The sample rate may be any value from 1 to 16383, coded as an unsigned 14-bit binary number. If EHSS = 1, the shortest time between logging events is 1 second and the longest (sample rate = 3FFFh) is 4.55 hours. If EHSS = 0, the shortest is 1 minute and the longest time is 273.05 hours (sample rate = 3FFFh). The EHSS bit is located in the RTC Control Register at address 0212h. It is important that the user sets the EHSS bit accordingly while setting the Sample Rate register. A sample rate of 0000h is not valid and must be avoided under all circumstances. This causes the device to enter into an undefined state, requiring a power-on reset and restore of the trim settings to recover.

#### **Sample Rate Register Bitmap**



During a mission, there is only read access to these registers. Bits cells marked "0" always read 0 and cannot be written to 1.

#### **TEMPERATURE CONVERSION**

The DS2422 can measure temperatures from -40°C to +85°C. Temperature values are represented as an 8- or 16 bit unsigned binary number with a resolution of 0.5°C in the 8-bit mode and 0.0625°C in the 16-bit mode.

The higher temperature byte TRH is always valid. In the 16-bit mode only the three highest bits of the lower byte TRL are valid. The five lower bits all read zero. TRL is undefined if the device is in 8-bit temperature mode. An outof-range temperature reading is indicated as 00h or 0000h when too cold and FFh or FFE0h when too hot.

#### **Latest Temperature Conversion Result Register Bitmap**



With TRH and TRL representing the decimal equivalent of a temperature reading the temperature value is calculated as



This equation is valid for converting temperature readings stored in the datalog memory as well as for data read from the Latest Temperature Conversion Result Register.

To specify the temperature alarm thresholds, the equation above needs to be resolved to

#### TALM =  $2 * 9$  (°C) + 82

Since the temperature alarm threshold is only one byte, the resolution or temperature increment is limited to 0.5°C. The TALM value needs to be converted into hexadecimal format before it can be written to one of the temperature alarm threshold registers (**Low Alarm address 0208h; High Alarm address 0209h**). Independent of the conversion mode (8 or 16 bit) only the most significant byte of a temperature conversion is used to determine whether an alarm will be generated.

#### **Temperature Conversion Examples**



#### **Temperature Alarm Threshold Examples**



# **SERIAL DATA INPUT**

In addition to temperature, the DS2422 can log 8-bit or 16-bit digital information that it receives through its serial interface. This interface is designed to directly connect to ADCs such as the MAX1086 or other circuits that use the same interface timing. The general timing of the serial interface is shown in Figure 9. All timing is derived from an on-chip ring oscillator, which generates the CLK signal. The CNVST signal is intended to start an analog-to-digital conversion. After the conversion is completed, the SCLK signal becomes active and on its rising edge clocks the digital value into the DS2422. The PUMP\_ONZ signal can activate a MAX619 charge pump to convert the 3V battery voltage of the DS2422 into 5V, for example, to power additional circuitry.

#### **Figure 9A. Serial Interface Timing**



#### **Figure 9B. Serial Interface Setup and Hold Timing**



The serial interface becomes active whenever the DS2422 executes a Forced Conversion command (see *Memory/Control Function Commands*) or during a mission, if the device is set up to log data from its serial interface. Regardless of its setup, the DS2422 always reads 16 bits from its serial input. **The 16-bit result of the latest serial reading is found at address 020Eh (low byte) and 020Fh (high byte).** The first bit read through the serial interface is always found as B15 at address 020Fh. If an ADC generates less than 16 bits, the internal weak pulldown of the SDATA pin makes the missing bits read zero.

#### **Latest Serial Data Reading Result Register Bitmap**



During a mission, if data logging from the serial input is enabled, the HIGH byte (B15 to B8) is always recorded. The LOW byte (B7 to B0) is only recorded if the DS2422 is set up for 16-bit logging of serial input data.

The algorithm to convert the digital reading from the serial interface into a physical unit depends on the circuit that provides the data to the DS2422. This algorithm needs to be reversed when calculating values for the alarm threshold registers that are associated to the serial data input. **The registers for data alarm thresholds are located at address 020Ah (Low Alarm) and 020B (High Alarm).** The comparison is based on the most significant serial input byte and assumes that the data is represented as unsigned binary number.

# **TEMPERATURE SENSOR ALARM**

The DS2422 has two **Temperature Alarm Threshold registers (address 0208h, 0209h)** to store values, which determine whether a critical temperature has been reached. A temperature alarm is generated if the device measures an alarming temperature AND the alarm signaling is enabled. The bits ETLA and ETHA that enable the temperature alarm are located in the Temperature Sensor Control Register. The temperature alarm flags TLF and THF are found in the Alarm Status Register at address 0214h.

#### **Temperature Sensor Control Register Bitmap**



During a mission, there is only read access to this register. Bits 2 to 7 have no function. They always read 0 and cannot be written to 1.

#### **Register Details**



#### **SERIAL INPUT ALARM**

The DS2422 has two **Data Alarm Threshold registers (address 020Ah, 020Bh)** to store values, which determine whether data read through the serial interface can generate an alarm. Such an alarm is generated if the input data qualifies for an alarm AND the alarm signaling is enabled. The bits EDLA and EDHA that enable the serial input alarm are located in the DATA\_IF Control Register. The corresponding alarm flags DLF and DHF are found in the Alarm Status Register at address 0214h.

#### **DATA\_IF Control Register Bitmap**



During a mission, there is only read access to this register. Bits 3 to 7 have no function. They always read 1 and cannot be written to 0.

#### **Register Details**



#### **REAL-TIME CLOCK CONTROL**

To minimize the power consumption of a battery-operated datalogger, the RTC oscillator should be turned off when device is not in use. The oscillator on/off bit is located in the RTC control register. This register also includes the EHSS bit, which determines whether the sample rate is specified in seconds or minutes.

#### **RTC Control Register Bitmap**



During a mission, there is only read access to this register. Bits 2-7 have no function. They always read 0 and cannot be written to 1.

#### **Register Details**



# **MISSION CONTROL**

The DS2422 is set up for its operation by writing appropriate data to its special function registers, which are located in the two register pages. The settings in the Mission Control Register determine whether temperature and/or external data is logged, which format (8 or 16 bits) is to be used and whether old data may be overwritten by new data, once the datalog memory is full. An additional control bit can be set to tell the DS2422 to wait with logging data until a temperature alarm is encountered.

#### **Mission Control Register Bitmap**



During a mission, there is only read access to this register. Bits 6 and 7 have no function. They always read 1 and cannot be written to 0.

# **Register Details**



# **ALARM STATUS**

The fastest way to determine whether a programmed alarm threshold was exceeded during a mission is through reading the Alarm Status Register. In a networked environment that contains multiple DS2422-based dataloggers the devices that encountered an alarm can quickly be identified by means of the Conditional Search command (see *ROM Function Commands*). The data and temperature alarm only occurs if enabled (see *Temperature Sensor Alarm* and *Serial Input Alarm*). The BOR alarm is always enabled.

#### **Alarm Status Register Bitmap**



There is only read access to this register. Bits 4 to 6 have no function. They always read 1. All five alarm status bits are cleared simultaneously when the Clear Memory function is invoked. See *Memory and Control Functions* for details.

#### **Register Details**



#### **GENERAL STATUS**

The information in the general status register tells the host computer whether a mission-related command was executed successfully. Individual status bits indicate whether the DS2422 is performing a mission, waiting for a temperature alarm to trigger the logging of data or whether the data from the latest mission has been cleared.

#### **General Status Register Bitmap**



There is only read access to this register. Bits 0, 2, 5, 6, and 7 have no function.

#### **Register Details**



#### **MISSION START DELAY**

The content of the Mission Start Delay Counter tells how many minutes will have to expire from the time a mission was started until the first measurement of the mission will take place (SUTA = 0) or until the device will start testing the temperature for a temperature alarm (SUTA = 1). The Mission Start Delay is stored as an unsigned 24-bit integer number. The maximum delay is 16777215 minutes, equivalent to 11650 days or roughly 31 years. If the start delay is non-zero and the SUTA bit is set to 1, first the delay has to expire before the device starts testing for temperature alarms to begin logging data.

#### **Mission Start Delay Counter**



During a mission, there is only read access to these registers.

For a typical mission, the Mission Start Delay is 0. If a mission is too long for a single DS2422 to store all readings at the selected sample rate, one can use several devices and set the Mission Start Delay for the second device to start recording as soon as the memory of the first device is full, and so on. The RO-bit in the Mission Control Register (address 0213h) must be set to 0 to prevent overwriting of collected data once the datalog memory is full.

#### **MISSION TIME STAMP**

The Mission Time Stamp indicates the date and time of the first logged temperature and/or data sample of the mission. There is only read access to the Mission Time Stamp Register.

#### **Mission Time Stamp Registers Bitmap**



#### **MISSION PROGRESS INDICATOR**

Depending on settings in the Mission Control Register (address 0213h) the DS2422 will log temperature and/or serial input data in 8-bit or 16-bit format. The description of the ETL and EDL bit explains where the device stores data in its datalog memory. The Mission Samples Counter together with the starting address and the logging format (8 or 16 bits) provides the information to identify valid blocks of data that have been gathered during the current (MIP = 1) or latest mission (MIP = 0). See *Datalog Memory Usage* for an illustration.

#### **Mission Samples Counter Register Map**



There is only read access to this register. Note that when both the internal temperature and serial input logging are enabled, the two logs are counted as one event in the **Mission Samples Counter** and **Device Samples Counter**.

The number read from the Mission Samples Counter indicates how often the DS2422 woke up during a mission to measure temperature and/or read data from its serial interface. The number format is 24-bit unsigned integer. The Mission Samples Counter is reset through the Clear Memory command.

#### **OTHER INDICATORS**

The Device Samples Counter is similar to the Mission Samples Counter. During a mission this counter increments whenever the DS2422 wakes up to measure and log data and when the device is testing for a temperature alarm in SUTA mode. Between missions the counter increments whenever the Forced Conversion command is executed. This way the Device Samples Counter functions like a gas gauge for the battery that powers the chip.

#### **Device Samples Counter Register Map**



There is only read access to this register.

The Device Samples Counter is reset to zero when the battery is connected to the  $V_{BAT}$  pin. The number format is 24-bit unsigned integer. The maximum number that can be represented in this format is 16777215.

The Device Configuration Byte is used to allow the master to distinguish between the DS2422 chip and different versions of iButtons based on this chip. With the DS2422, this byte always reads 00h.

#### **Device Configuration Byte**



There is only read access to this register.

# **SECURITY BY PASSWORD**

The DS2422 is designed to use two passwords that control read access and full access. Reading from or writing to the scratchpad as well as the forced conversion command does not require a password. The password needs to be transmitted right after the command code of the memory or control function. If password checking is enabled the password transmitted is compared to the passwords stored in the device. The data pattern stored in the Password Control register determines whether password checking is enabled.

#### **Password Control Register**



During a mission, there is only read access to this register.

To enable password checking, the EPW bits need to form a binary pattern of 10101010 (AAh). The default pattern of EPW is different from AAh. If the EPW pattern is different from AAh, any pattern is accepted, as long as it has a length of exactly 64 bits. Once enabled, changing the passwords and disabling password checking requires the knowledge of the current full-access password.

Before enabling password checking, passwords for read-only access as well as for full access (read/write/control) need to be written to the password registers. Setting up a password or enabling/disabling the password checking is done in the same way as writing data to a memory location, only the address is different. Since they are located in the same memory page, both passwords can be redefined at the same time.

#### **Read Access Password Register**



There is only write access to this register. Attempting to read the password reports all zeros. The password cannot be changed while a mission is in progress.

The Read Access Password needs to be transmitted exactly in the sequence RP0, RP1… RP62, RP63. This password only applies to the functions "Read Memory" and "Read Memory with CRC". The DS2422 delivers the requested data only if the password transmitted by the master was correct or if password checking is not enabled.



#### **Full Access Password Register**

There is only write access to this register. Attempting to read the password will report all zeros. The password cannot be changed while a mission is in progress.

The Full Access Password needs to be transmitted exactly in the sequence FP0, FP1… FP62, FP63. It will affect the functions "Read Memory", "Read Memory with CRC", "Copy Scratchpad", "Clear Memory", "Start Mission", and "Stop Mission". The DS2422 executes the command only if the password transmitted by the master was correct or if password checking is not enabled.

Due to the special behavior of the write access logic, the Password Control Register and both passwords must be written at the same time. When setting up new passwords, always verify (read back) the scratchpad before sending the copy scratchpad command. After a new password is successfully copied from the scratchpad to its memory location, erase the scratchpad by filling it with new data (write scratchpad command). Otherwise a copy of the passwords will remain in the scratchpad for public read access.

# **SERIAL DATA INTERFACE TUNING**

The serial interface consists of several signals that are intended to control external circuitry, such as an analog-todigital converter (see Figure 9A). There is one signal, called CNVST, which can be used to load data into a shift register or to trigger a data conversion. The delay  $t_{SP}$  from the activation of the serial interface (PUMP\_ONZ) to CNVST is user-programmable through the Delay Register. When used with a charge pump such as the MAX619, the variable delay t<sub>SP</sub> is used to give the charge pump adequate time to stabilize before a conversion starts. If no charge pump is used, the delay may be set to 00h to begin the conversion sooner.

#### **Delay Register**



During a mission, there is only read access to this register.

The Delay Register holds the preset value of a counter that determines the duration of  $t_{SP}$ . The number format is unsigned integer with values ranging from 0 to FFh (0 to 255 decimal). This is equivalent to a range from 0 to 127.5ms. The power-on value of this register is 08h.

#### **TEMPERATURE CONVERTER TRIM**

The DS2422 leaves the factory fully tested, but not trimmed for temperature accuracy. The actual trim values consist of two sets, Temperature Counter Reset and Temperature Conversion Length, which need to be determined individually for each device during a 2-point calibration step. These trim values need to be written to the respective registers in the Trim Register Page before the device meets the accuracy specification shown in the graphs at the end of this document.

#### **Temperature Counter Reset Register**



There is always full read/write access to this register. Bits 5-7 of the High Byte are always 0 and cannot be written to 1. The power-on default is 6Bh (0404h) and 11h (0405h).

The Temperature Counter Reset value provides a purely vertical shift along the Temperature Transfer Curve in order to reset the zero point. The algorithm to determine the correct Temperature Counter Reset value is included in the application note that describes the 2-point calibration trim.

#### **Temperature Conversion Length Register**



There is always full read/write access to this register. Bits 5-7 of the High Byte are always 0 and cannot be written to 1. The power-on default is A6h (0406h) and 12h (0407h).

The Temperature Conversion Length value provides a vertical and horizontal shift of the Temperature Transfer Curve. The algorithm to determine the correct Temperature Counter Reset value is included in the application note that describes the 2-point calibration trim.

# **DATALOG MEMORY USAGE**

Once setup for a mission, the DS2422 logs the temperature measurements and/or external data at equidistant time points entry after entry in its datalog memory. The datalog memory is able to store 8192 entries in 8-bit format or 4096 entries in 16-bit format (Figure 10A). If temperature as well as external data is logged, both in the same format, the memory is split into two equal sections that can store 4096 8-bit entries or 2048 16-bit entries (Figure 10B). If the device is set up to log data in different formats, e. g., temperature in 8-bit and external data in 16-bit format, the memory is split into blocks of different size, accommodating 2560 entries for either data source (Figure 10C). In this case, the upper 256 bytes are not used. In 16-bit format, the higher 8 bits of an entry are stored at the

lower address. Knowing the starting time point (Mission Time Stamp) and the interval between temperature measurements one can reconstruct the time and date of each measurement.

There are two alternatives to the way the DS2422 behaves after the datalog memory is filled with data. The user can program the device to either stop any further recording (disable "rollover") or overwrite the previously recorded data (enable "rollover"), one entry at a time, starting again at the beginning of the respective memory section. The contents of the Mission Samples Counter in conjunction with the sample rate and the Mission Time Stamp will then allow reconstructing the time points of all values stored in the datalog memory. This gives the exact history over time for the most recent measurements taken. Earlier measurements cannot be reconstructed.





**Figure 10B. Two-Channel Logging, Equal Resolution**



#### **Figure 10C. Two-Channel Logging, Different Resolution**



#### **MISSIONING**

The typical task of the DS2422 is recording temperature and/or external data. Before the device can perform this function, it needs to be set up properly. This procedure is called missioning.

First of all, DS2422 needs to have its RTC set to valid time and date. This reference time may be the local time, or, when used inside of a mobile unit, UTC (also called GMT, Greenwich Mean Time) or any other time standard that was agreed upon. The RTC oscillator must be running (EOSC = 1). The memory assigned to store the Mission Time Stamp, Mission Samples Counter, Sample Rate, and Alarm Flags must be cleared using the Memory Clear command. To enable the device for a mission, at least one of the enable logging bits needs to be set to 1. These are general settings that have to be made in any case, regardless of the type of object to be monitored and the duration of the mission.

If alarm signaling is desired, the temperature alarm and/or data alarm low and high thresholds must be defined. How to convert a temperature value into the binary code to be written to the threshold registers is described under *Temperature Conversion* earlier in this document. Determining the thresholds for the data alarm depends on the hardware/converter that is connected to the DS2422's serial input. In addition, the temperature and/or data alarm must be enabled for the low- and/or high-threshold. This makes the device respond to a Conditional Search command (see *ROM Function Commands*), provided that an alarming condition has been encountered.

The setting of the RO bit (rollover enable) and sample rate depends on the duration of the mission and the monitoring requirements. If the most recently logged data is important, the rollover should be enabled ( $RO = 1$ ). Otherwise one should estimate the duration of the mission in minutes and divide the number by 8192 (single channel 8-bit format) or 4096 (single channel 16-bit format, two channels 8-bit format) or 2048 (two channels 16-bit format) or 2560 (two channels, one 8-bit format and one 16-bit format) to calculate the value of the sample rate (number of minutes between temperature conversions). If the estimated duration of a mission is 10 days (= 14400 minutes), for example, then the 8192-byte capacity of the datalog memory would be sufficient to store a new 8-bit value every 1.8 minutes (110 seconds). If the datalog memory of the DS2422 is not large enough to store all readings, one can use several devices and set the Mission Start Delay to values that make the second device start logging as soon as the memory of the first device is full, and so on. The RO-bit needs to be set to 0 to disable rollover that would otherwise overwrite the logged data.

After the RO bit and the Mission Start Delay are set, the sample rate needs to be written to the Sample Rate Register. The sample rate may be any value from 1 to 16383, coded as an unsigned 14-bit binary number. A sample rate of all zeros is not valid and must be avoided under all circumstances. This causes the device to enter into an undefined state, requiring a power-on reset and restore of the trim settings to recover. The fastest sample rate is one sample per second (EHSS = 1, Sample Rate = 0001h) and the slowest is one sample every 273.05 hours (EHSS = 0, Sample Rate =3 FFFh). To get one sample every 6 minutes, for example, the sample rate value needs to be set to 6 (EHSS = 0) or 360 decimal (equivalent to 0168h at EHSS = 1).

If there is a risk of unauthorized access to the DS2422 or manipulation of data, one should define passwords for read access and full access. Before the passwords become effective, their use needs to be enabled. *See Security by Password* for more details.

The last step to begin a mission is to issue the Start Mission command. As soon as it has received this command, the DS2422 sets the MIP flag and clear the MEMCLR flag. With the immediate/delayed start mode (SUTA = 0), after as many minutes as specified by the Mission Start Delay are over, the device wakes up, copy the current date and time to the mission time stamp register, and log the first entry of the mission. This increments both the Mission Samples Counter and Device Samples Counter. All subsequent log entries are made as specified by the value in the Sample Rate Register and the EHSS bit.

If the Start Upon Temperature Alarm mode is chosen (SUTA = 1, ETL = 1) the DS2422 will first wait until the start delay is over. Then the device wakes up in intervals as specified by the sample rate and EHSS bit and measure the temperature. This increments the device samples counter only. Only after an alarming temperature is encountered does the DS2422 set the mission time stamp. The first sample of the mission is logged one sample period after the temperature alarm occurred. From then on, both the Mission Samples Counter and Device Samples Counter increments at the same time. All subsequent log entries are made as specified by the value in the Sample Rate Register and the EHSS bit.

The general-purpose memory operates independently of the other memory sections and is not write-protected during a mission. All memory of the DS2422 can be read at any time, e. g., to watch the progress of a mission. Attempts to read the passwords will read 00h bytes instead of the data that is stored in the password registers.

# **ADDRESS REGISTERS AND TRANSFER STATUS**

Because of the serial data transfer, the DS2422 employs three address registers, called TA1, TA2, and E/S (Figure 11). Registers TA1 and TA2 must be loaded with the target address to which the data is written or from which data is sent to the master upon a Read command. Register E/S acts like a byte counter and transfer status register. It is used to verify data integrity with Write commands. Therefore, the master only has read access to this register. The lower 5 bits of the E/S Register indicate the address of the last byte that has been written to the scratchpad. This address is called Ending Offset. **The DS2422 requires that the Ending Offset is always 1Fh for a Copy Scratchpad to function.** Bit 5 of the E/S Register, called PF or "partial byte flag," is set if the number of data bits sent by the master is not an integer multiple of 8. Bit 6 is always a 0. Note that the lowest 5 bits of the target address also determine the address within the scratchpad, where intermediate storage of data will begin. This address is called byte offset. If the target address for a Write command is 13Ch, for example, then the scratchpad will store incoming data beginning at the byte offset 1Ch and will be full after only 4 bytes. The corresponding ending offset in this example is 1Fh. For best economy of speed and efficiency, the target address for writing should point to the beginning of a new page, i.e., the byte offset will be 0. Thus the full 32-byte capacity of the scratchpad is available, resulting also in the ending offset of 1Fh. However, it is possible to write 1 or several contiguous bytes somewhere within a page. The ending offset together with the Partial and Overflow Flag is mainly a means to support the master checking the data integrity after a Write command. The highest valued bit of the E/S Register, called AA or Authorization Accepted, indicates that a valid copy command for the scratchpad has been received and executed. Writing data to the scratchpad clears this flag.



#### **Figure 11. Address Registers**

#### **WRITING WITH VERIFICATION**

To write data to the DS2422, the scratchpad has to be used as intermediate storage. First the master issues the Write Scratchpad command to specify the desired target address, followed by the data to be written to the scratchpad. In the next step, the master sends the Read Scratchpad command to read the scratchpad and to verify data integrity. As preamble to the scratchpad data, the DS2422 sends the requested target address TA1 and TA2 and the contents of the E/S Register. If the PF flag is set, data did not arrive correctly in the scratchpad. The master does not need to continue reading; it can start a new trial to write data to the scratchpad. Similarly, a set AA flag indicates that the Write command was not recognized by the device. If everything went correctly, both flags are cleared and the ending offset indicates the address of the last byte written to the scratchpad. Now the master can continue verifying every data bit. After the master has verified the data, it has to send the Copy Scratchpad command. This command must be followed exactly by the data of the three address registers TA1, TA2 and E/S as the master has read them verifying the scratchpad. As soon as the DS2422 has received these bytes, it will copy the data to the requested location beginning at the target address.

#### **MEMORY- AND CONTROL-FUNCTION COMMANDS**

The "Memory/Control Function Flow Chart" (Figure 12) describes the protocols necessary for accessing the memory and the special function registers of the DS2422. An example on how to use these and other functions to set up the DS2422 for a mission is included at the end of this document, preceding the Electrical Characteristics section. The communication between master and DS2422 takes place either at regular speed (default, OD = 0) or at Overdrive Speed (OD = 1). If not explicitly set into the Overdrive Mode the DS2422 assumes regular speed. Internal memory access during a mission has priority over external access through the 1-Wire interface. This affects several of the commands described below. See section *Memory Access Conflicts* for details and remedies.

# **WRITE SCRATCHPAD COMMAND [0Fh]**

After issuing the Write Scratchpad command, the master must first provide the 2-byte target address, followed by the data to be written to the scratchpad. The data is written to the scratchpad starting at the byte offset (T4:T0). The master has to send as many bytes as are needed to reach the Ending Offset of 1Fh. If a data byte is incomplete, its content is ignored and the partial byte flag PF is set.

When executing the Write Scratchpad command the CRC generator inside the DS2422 (see Figure 18) calculates a CRC of the entire data stream, starting at the command code and ending at the last data byte sent by the master. This CRC is generated using the CRC16 polynomial by first clearing the CRC generator and then shifting in the command code (0Fh) of the Write Scratchpad command, the Target Addresses TA1 and TA2 as supplied by the master and all the data bytes. The master may end the Write Scratchpad command at any time. If the ending offset is 11111b, the master may send 16 read-time slots and receives the inverted CRC16 generated by the DS2422.

Note that both register pages are write-protected during a mission. Although the Write Scratchpad command works normally at any time, the subsequent copy scratchpad to a register page will fail during a mission.

# **READ SCRATCHPAD COMMAND [AAh]**

This command is used to verify scratchpad data and target address. After issuing the Read Scratchpad command, the master begins reading. The first 2 bytes will be the target address. The next byte will be the ending offset/data status byte (E/S) followed by the scratchpad data beginning at the byte offset (T4:T0), as shown in Figure 11. The master may continue reading data until the end of the scratchpad after which it will receive an inverted CRC16 of the command code, Target Addresses TA1 and TA2, the E/S byte, and the scratchpad data starting at the target address. After the CRC is read, the bus master will read logical 1s from the DS2422 until a reset pulse is issued.

# **COPY SCRATCHPAD WITH PASSWORD [99h]**

This command is used to copy data from the scratchpad to the writable memory sections. After issuing the Copy Scratchpad command, the master must provide a 3-byte authorization pattern, which can be obtained by reading the scratchpad for verification. This pattern must exactly match the data contained in the three address registers (TA1, TA2, E/S, in that order). Next the master must transmit the 64-bit full-access password. If passwords are enabled and the transmitted password is different from the stored full-access password, the Copy Scratchpad with Password command will fail. The device will stop communicating and will wait for a reset pulse. If the password was correct or if passwords were not enabled, the device will test the 3-byte authorization code. If the authorization code pattern matches, the AA (Authorization Accepted) flag will be set and the copy will begin. A pattern of alternating 1s and 0s will be transmitted after the data has been copied until the master issues a reset pulse. While the copy is in progress any attempt to reset the part will be ignored. Copy typically takes 2µs per byte.

The data to be copied is determined by the three address registers. The scratchpad data from the beginning offset through the ending offset will be copied, starting at the target address. Anywhere from 1 to 32 bytes may be copied to memory with this command. The AA flag will remain at logic 1 until it is cleared by the next Write Scratchpad command. With suitable password, the copy scratchpad will always function for the 16 pages of data memory and the 2 pages of calibration memory. While a mission is in progress, write attempts to the register pages will not be successful. The AA bit (Authorization Accepted) remaining at 0 will indicate this.

# **READ MEMORY WITH PASSWORD AND CRC [69h]**

The Read Memory with CRC command is the general function to read from the device. This command generates and transmits a 16-bit CRC following the last data byte of a memory page.

After having sent the command code of the Read Memory with CRC command, the bus master sends a 2-byte address that indicates a starting byte location. Next the master must transmit one of the 64-bit passwords. If passwords are enabled and the transmitted password does not match one of the stored passwords, the Read Memory with Password and CRC command will fail. The device will stop communicating and will wait for a reset pulse. If the password was correct or if passwords were not enabled, the master reads data from the DS2422 beginning from the starting address and continuing until the end of a 32-byte page is reached. At that point the bus master will send 16 additional read data time slots and receive the inverted 16-bit CRC. With subsequent read data time slots the master will receive data starting at the beginning of the next memory page followed again by the CRC for that page. This sequence will continue until the bus master resets the device. When trying to read the passwords or memory areas that are marked as "reserved", the DS2422 will transmit 00h or FFh bytes respectively. The CRC at the end of a 32-byte memory page is based on the data as it was transmitted.

With the initial pass through the Read Memory with CRC flow, the 16-bit CRC value is the result of shifting the command byte into the cleared CRC generator followed by the 2 address bytes and the contents of the data memory. Subsequent passes through the Read Memory with CRC flow will generate a 16-bit CRC that is the result of clearing the CRC generator and then shifting in the contents of the data memory page. After the 16-bit CRC of the last page is read, the bus master will receive logical 1s from the DS2422 until a reset pulse is issued. The Read Memory with CRC command sequence can be ended at any point by issuing a reset pulse.





# **Figure 12-2. Memory/Control Function Flow Chart**



# **Figure 12-3. Memory/Control Function Flow Chart**











#### **CLEAR MEMORY WITH PASSWORD [96h]**

The Clear Memory with Password command is used to prepare the device for another mission. This command will only be executed if no mission is in progress. After the command code the master must transmit the 64-bit fullaccess password followed by a FFh dummy byte. If passwords are enabled and the transmitted password is different from the stored full-access password or a mission is in progress, the Clear Memory with Password command will fail. The device will stop communicating and will wait for a reset pulse. If the password was correct or if passwords were not enabled, the device will clear the Mission Time Stamp, Mission Samples Counter, Sample Rate register, and all alarm flags of the Alarm Status Register. After these cells are cleared, the MEMCLR bit of the General Status Register will read 1 to indicate the successful execution of the Clear Memory with Password command. Clearing of the datalog memory is not necessary because the Mission Samples Counter indicates how many entries in the datalog memory are valid.

# **FORCED CONVERSION [55h]**

The Forced Conversion command can be used to measure the temperature and read data from the serial data interface without starting a mission. After the command code the master has to send one FFh byte to get the conversion started. The conversion result is found as 16-bit value in the Latest Temperature Conversion Result and Latest Serial Data Reading registers. This command is only executed if no mission is in progress (MIP = 0). It cannot be interrupted and takes maximum 666 ms to complete. During this time memory access through the 1- Wire interface is blocked. The device will behave the same way as during a mission when the sampling interferes with a memory/control function command. See *Memory Access Conflicts* for details. A forced conversion must not be attempted while the RTC oscillator is stopped. This causes the device to enter into an undefined state, requiring a power-on reset and restore of the trim settings to recover.

# **START MISSION WITH PASSWORD [CCh]**

The DS2422 uses a control function command to start a mission. A new mission can only be started if the previous mission has been ended and the memory has been cleared. After the command code, the master must transmit the 64-bit full-access password followed by a FFh dummy byte. If passwords are enabled and the transmitted password is different from the stored full-access password or a mission is in progress, the Start Mission with Password command will fail. The device will stop communicating and will wait for a reset pulse. If the password was correct or if passwords were not enabled, the device will start a mission. The sampling and data logging will begin as soon as the mission start delay is over (SUTA = 0) and, if SUTA = 1, one sample period after a temperature alarm was encountered. While the device is waiting for a temperature alarm to occur, the WFTA flag in the general status register will read 1. During a mission there is only read access to the Register Pages.

# **STOP MISSION WITH PASSWORD [33h]**

The DS2422 uses a control function command to stop a mission. Only a mission that is in progress can be stopped. After the command code, the master must transmit the 64-bit full-access password followed by a FFh dummy byte. If passwords are enabled and the transmitted password is different from the stored full-access password or a mission is not in progress, the Stop Mission with Password command will fail. The device will stop communicating and will wait for a reset pulse. If the password was correct or if passwords were not enabled, the device will clear the MIP bit in the General Status Register and restore write access to the Register Pages. The WFTA bit is not cleared. See the description of the General Status Register for a method to clear the WFTA bit.

# **MEMORY ACCESS CONFLICTS**

While a mission is in progress or while the device is waiting for a temperature alarm to start a mission, periodically a temperature sample is taken and/or data is read from the serial interface and logged. This "internal activity" has priority over 1-Wire communication. As a consequence, device-specific commands (excluding ROM function commands and 1-Wire reset) will not perform properly when internal and "external" activities interfere with each other. Not affected are the commands Start Mission, Forced Conversion and Clear Memory, because they are not applicable while a mission is in progress or while the device is waiting for a temperature alarm. The table below explains how the remaining five commands are affected by internal activity, how to detect this interference and how to work around it.



The interference is more likely to be seen with a high sample rate (1 sample every second) and with high-resolution logging, which can last up to 666ms when both temperature and external data are recorded. With lower sample rates interference may hardly be visible at all. In any case, when writing driver software, it is important to know about the possibility of interference and to take measures to work around it.

# **1-Wire BUS SYSTEM**

The 1-Wire bus is a system, which has a single bus master and one or more slaves. In all instances the DS2422 is a slave device. The bus master is typically a microcontroller. The discussion of this bus system is broken down into three topics: hardware configuration, transaction sequence, and 1-Wire signaling (signal types and timing). The 1-Wire protocol defines bus transactions in terms of the bus state during specific time slots that are initiated on the falling edge of sync pulses from the bus master. For a more detailed protocol description, refer to Chapter 4 of the *Book of DS19xx iButton Standards*.

# **HARDWARE CONFIGURATION**

The 1-Wire bus has only a single line by definition; it is important that each device on the bus be able to drive it at the appropriate time. To facilitate this, each device attached to the 1-Wire bus must have open drain or tri-state outputs. The 1-Wire port of the DS2422 is open-drain with an internal circuit equivalent to that shown in Figure 13.

A multidrop bus consists of a 1-Wire bus with multiple slaves attached. At standard speed the 1-Wire bus has a maximum data rate of 16.3kbps. The speed can be boosted to 142kbps by activating the Overdrive mode. The DS2422 is not guaranteed to be fully compliant to the iButton Standard. Its maximum data rate in standard speed mode is 15.4kbps and 125kbps in Overdrive. The value of the pullup resistor primarily depends on the network size and load conditions. The DS2422 requires a pullup resistor of maximum 2.2 $k\Omega$  at any speed.

The idle state for the 1-Wire bus is high. If for any reason a transaction needs to be suspended, the bus MUST be left in the idle state if the transaction is to resume. If this does not occur and the bus is left low for more than 16µs (Overdrive speed) or more than 120µs (standard speed), one or more devices on the bus may be reset. Note that the DS2422 does not quite meet the full 16µs maximum low time of the normal 1-Wire bus Overdrive timing. With the DS2422 the bus must be left low for no longer than 12µs at Overdrive to ensure that no DS2422 on the 1-Wire bus performs a reset. The DS2422 will communicate properly when used in conjunction with a DS2480B or DS2490 1-Wire driver and adapters that are based on these driver chips.

#### **Figure 13. Hardware Configuration**



# **TRANSACTION SEQUENCE**

The protocol for accessing the DS2422 through the 1-Wire port is as follows:

- **Initialization**
- **ROM Function Command**
- **Memory/Control Function Command**
- **Transaction/Data**

#### **INITIALIZATION**

All transactions on the 1-Wire bus begin with an initialization sequence. The initialization sequence consists of a reset pulse transmitted by the bus master followed by presence pulse(s) transmitted by the slave(s). The presence pulse lets the bus master know that the DS2422 is on the bus and is ready to operate. For more details, see the *1-Wire Signaling* section.

#### **1-Wire ROM FUNCTION COMMANDS**

Once the bus master has detected a presence, it can issue one of the eight ROM function commands that the DS2422 supports. All ROM function commands are 8 bits long. A list of these commands follows (refer to flowchart in Figure 14).

#### **READ ROM [33h]**

This command allows the bus master to read the DS2422's 8-bit family code, unique 48-bit serial number, and 8-bit CRC. This command can only be used if there is a single slave on the bus. If more than one slave is present on the bus, a data collision will occur when all slaves try to transmit at the same time (open drain will produce a wired-AND result). The resultant family code and 48-bit serial number will result in a mismatch of the CRC.

#### **MATCH ROM [55h]**

The Match ROM command, followed by a 64-bit ROM sequence, allows the bus master to address a specific DS2422 on a multidrop bus. Only the DS2422 that exactly matches the 64-bit ROM sequence will respond to the following memory function command. All other slaves will wait for a reset pulse. This command can be used with a single or multiple devices on the bus.

# **SEARCH ROM [F0h]**

When a system is initially brought up, the bus master might not know the number of devices on the 1-Wire bus or their registration numbers. By taking advantage of the wired-AND property of the bus, the master can use a process of elimination to identify the registration numbers of all slave devices. For each bit of the registration number, starting with the least significant bit, the bus master issues a triplet of time slots. On the first slot, each slave device participating in the search outputs the true value of its registration number bit. On the second slot, each slave device participating in the search outputs the complemented value of its registration number bit. On the third slot, the master writes the true value of the bit to be selected. All slave devices that do not match the bit written by the master stop participating in the search. If both of the read bits are zero, the master knows that slave devices exist with both states of the bit. By choosing which state to write, the bus master branches in the romcode tree. After one complete pass, the bus master knows the registration number of a single device. Additional passes identify the registration numbers of the remaining devices. Refer to *Application Note 187: 1-Wire Search Algorithm* for a detailed discussion, including an example.

# **CONDITIONAL SEARCH [ECh]**

The Conditional Search ROM command operates similarly to the Search ROM command except that only those devices, which fulfill certain conditions, will participate in the search. This function provides an efficient means for the bus master to identify devices on a multidrop system that have to signal an important event. After each pass of the conditional search that successfully determined the 64-bit ROM code for a specific device on the multidrop bus, that particular device can be individually accessed as if a Match ROM had been issued, since all other devices will have dropped out of the search process and will be waiting for a reset pulse.

The DS2422 will respond to the conditional search if one of the five alarm flags of the Alarm Status Register (address 0214h) reads 1. The data and temperature alarm will only occur if enabled (see Temperature Sensor Alarm and Serial Input Alarm). The BOR alarm is always enabled. The first alarm that occurs will make the device respond to the Conditional Search command.

# **SKIP ROM [CCh]**

This command can save time in a single-drop bus system by allowing the bus master to access the memory functions without providing the 64-bit ROM code. If more than one slave is present on the bus and, for example, a Read command is issued following the Skip ROM command, data collision will occur on the bus as multiple slaves transmit simultaneously (open drain pulldowns will produce a wired-AND result).

#### **RESUME COMMAND [A5h]**

The DS2422 needs to be accessed several times before a mission will start. In a multidrop environment this means that the 64-bit ROM code after a Match ROM command has to be repeated for every access. To maximize the data throughput in a multidrop environment, the Resume function was implemented. This function checks the status of the RC bit and, if it is set, directly transfers control to the Memory/Control functions, similar to a Skip ROM command. The only way to set the RC bit is through successfully executing the Match ROM, Search ROM or Overdrive Match ROM command. Once the RC bit is set, the device can repeatedly be accessed through the Resume Command function. Accessing another device on the bus will clear the RC bit, preventing two or more devices from simultaneously responding to the Resume Command function.

# **OVERDRIVE SKIP ROM [3Ch]**

On a single-drop bus this command can save time by allowing the bus master to access the memory/control functions without providing the 64-bit ROM code. Unlike the normal Skip ROM command, the Overdrive Skip ROM sets the DS2422 in the Overdrive mode (OD = 1). All communication following this command has to occur at Overdrive speed until a reset pulse of minimum 690µs duration resets all devices on the bus to standard speed (OD = 0).

When issued on a multidrop bus this command will set all Overdrive-supporting devices into Overdrive mode. To subsequently address a specific Overdrive-supporting device, a reset pulse at Overdrive speed has to be issued followed by a Match ROM or Search ROM command sequence. This will speed up the time for the search process. If more than one slave supporting Overdrive is present on the bus and the Overdrive Skip ROM command is followed by a Read command, data collision will occur on the bus as multiple slaves transmit simultaneously (opendrain pulldowns will produce a wired-AND result).

# **OVERDRIVE MATCH ROM [69h]**

The Overdrive Match ROM command followed by a 64-bit ROM sequence transmitted at Overdrive Speed allows the bus master to address a specific DS2422 on a multidrop bus and to simultaneously set it in Overdrive mode. Only the DS2422 that exactly matches the 64-bit ROM sequence will respond to the subsequent memory/control function command. Slaves already in Overdrive mode from a previous Overdrive Skip or successful Overdrive Match command will remain in Overdrive mode. All overdrive-capable slaves will return to standard speed at the next Reset Pulse of minimum 690µs duration. The Overdrive Match ROM command can be used with a single or multiple devices on the bus.

**Figure 14-1. ROM Functions Flow Chart**



# **Figure 14-2. ROM Functions Flow Chart**



# **1-Wire SIGNALING**

The DS2422 requires strict protocols to ensure data integrity. The protocol consists of four types of signaling on one line: Reset Sequence with Reset Pulse and Presence Pulse, Write-Zero, Write-One and Read-Data. Except for the presence pulse the bus master initiates all these signals. The DS2422 can communicate at two different speeds, standard speed, and Overdrive Speed. If not explicitly set into the Overdrive mode, the DS2422 will communicate at standard speed. While in Overdrive Mode the fast timing applies to all waveforms.

To get from idle to active, the voltage on the 1-Wire line needs to fall from  $V_{\text{PID}}$  below the threshold  $V_{\text{TL}}$ . To get from active to idle, the voltage needs to rise from  $V_{ILMAX}$  past the threshold  $V_{TH}$ . The time it takes for the voltage to make this rise is seen in Figure 15 as 's' and its duration depends on the pull-up resistor ( $R_{PUP}$ ) used and the capacitance of the 1-Wire network attached. The voltage  $V_{ILMAX}$  is relevant for the DS2422 when determining a logical level, not triggering any events.

The initialization sequence required to begin any communication with the DS2422 is shown in Figure 15. A Reset Pulse followed by a Presence Pulse indicates the DS2422 is ready to receive data, given the correct ROM and memory function command. If the bus master uses slew-rate control on the falling edge, it must pull down the line for t<sub>RSTL</sub> + t<sub>F</sub> to compensate for the edge. A t<sub>RSTL</sub> duration of 690µs or longer will exit the Overdrive Mode returning the device to standard speed. If the DS2422 is in Overdrive Mode and  $t_{RSTL}$  is no longer than 80µs the device will remain in Overdrive Mode.



#### **Figure 15. Initialization Procedure "Reset and Presence Pulses"**

After the bus master has released the line it goes into receive mode (RX). Now the 1-Wire bus is pulled to  $V_{\text{PUP}}$ through the pullup resistor or, in case of a DS2480B driver, by active circuitry. When the threshold  $V_{TH}$  is crossed, the DS2422 waits for t<sub>PDH</sub> and then transmits a Presence Pulse by pulling the line low for t<sub>PDL</sub>. To detect a presence pulse, the master must test the logical state of the 1-Wire line at  $t_{\text{MSP}}$ .

The t<sub>RSTH</sub> window must be at least the sum of t<sub>PDHMAX</sub>, t<sub>PDLMAX</sub>, and t<sub>RECMIN</sub>. Immediately after t<sub>RSTH</sub> is expired, the DS2422 is ready for data communication. In a mixed population network  $t_{RSTH}$  should be extended to minimum 480µs at standard speed and 48µs at Overdrive speed to accommodate other 1-Wire devices.

# **Read/Write Time Slots**

Data communication with the DS2422 takes place in time slots, which carry a single bit each. Write time slots transport data from bus master to slave. Read time slots transfer data from slave to master. The definitions of the write and read time slots are illustrated in Figure 16.

All communication begins with the master pulling the data line low. As the voltage on the 1-Wire line falls below the threshold  $V_{\text{TI}}$ , the DS2422 starts its internal timing generator that determines when the data line will be sampled during a write time slot and how long data will be valid during a read time slot.

#### **Master-to-Slave**

For a write-one time slot, the voltage on the data line must have crossed the V<sub>TH</sub> threshold before the write-one low time t<sub>W1LMAX</sub> is expired. For a write-zero time slot, the voltage on the data line must stay below the V<sub>TH</sub> threshold until the write-zero low time t<sub>WOLMIN</sub> is expired. For most reliable communication the voltage on the data line should not exceed V<sub>ILMAX</sub> during the entire t<sub>W0L</sub> or t<sub>W1L</sub> window. After the V<sub>TH</sub> threshold has been crossed, the DS2422 needs a recovery time  $t_{REC}$  before it is ready for the next time slot.

# **Figure 16. Read/Write Timing Diagram**

#### **Write-One Time Slot**



#### **Write-Zero Time Slot**





#### **Read-Data Time Slot**

#### **Slave-to-Master**

A **read-data** time slot begins like a write-one time slot. The voltage on the data line must remain below  $V<sub>T<sub>L</sub></sub>$  until the read low time t<sub>RL</sub> is expired. During the t<sub>RL</sub> window, when responding with a 0, the DS2422 will start pulling the data line low; its internal timing generator determines when this pulldown ends and the voltage starts rising again. When responding with a 1, the DS2422 will not hold the data line low at all, and the voltage starts rising as soon as  $t_{RL}$  is over.

The sum of  $t_{RL}$  +  $\delta$  (rise rime) on one side and the internal timing generator of the DS2422 on the other side define the master sampling window ( $t_{MSRMIN}$  to  $t_{MSRMAX}$ ) in which the master must perform a read from the data line. For most reliable communication, t<sub>RL</sub> should be as short as permissible and the master should read close to but no later than  $t_{MSRMAX}$ . After reading from the data line, the master must wait until  $t_{SLOT}$  is expired. This guarantees sufficient recovery time  $t_{\text{REC}}$  for the DS2422 to get ready for the next time slot.

# **IMPROVED NETWORK BEHAVIOR**

In a 1-Wire environment line termination is possible only during transients controlled by the bus master (1-Wire driver). 1-Wire networks, therefore, are susceptible to noise of various origins. Depending on the physical size and topology of the network, reflections from end points and branch points can add up or cancel each other to some extent. Such reflections are visible as glitches or ringing on the 1-Wire communication line. Noise coupled onto the 1-Wire line from external sources can also result in signal glitching. A glitch during the rising edge of a time slot can cause a slave device to lose synchronization with the master and, as a consequence, result in a search ROM command coming to a dead end or cause a device-specific function command to abort. For better performance in network applications, the DS2422 uses a new 1-Wire front end, which makes it less sensitive to noise and also reduces the magnitude of noise injected by the slave device itself.

The 1-Wire front end of the DS2422 differs from traditional slave devices in four characteristics.

- 1) The falling edge of the presence pulse has a controlled slew rate. This provides a better match to the line impedance than a digitally switched transistor, converting the high frequency ringing known from traditional devices into a smoother low-bandwidth transition. The slew rate control is specified by the parameter  $t_{FPD}$ , which has different values for standard and Overdrive speed.
- 2) There is additional low-pass filtering in the circuit that detects the falling edge at the beginning of a time slot. This reduces the sensitivity to high-frequency noise. This additional filtering does not apply at Overdrive speed.
- 3) There is a hysteresis at the low-to-high switching threshold  $V<sub>TH</sub>$ . If a negative glitch crosses  $V<sub>TH</sub>$  but doesn't go below  $V_{TH}$  -  $V_{HY}$ , it will not be recognized (Figure 17, Case A). The hysteresis is effective at any 1-Wire speed.
- 4) There is a time window specified by the rising edge hold-off time  $t_{RFH}$  during which glitches will be ignored, even if they extend below  $V_{TH}$  -  $V_{HY}$  threshold (Figure 17, Case B,  $t_{GL} < t_{REH}$ ). Deep voltage droops or glitches that appear late after crossing the  $V_{TH}$  threshold and extend beyond the t<sub>REH</sub> window cannot be filtered out and will be taken as beginning of a new time slot (Figure 17, Case C,  $t_{GL} \ge t_{REH}$ ).

Only devices which have the parameters  $t_{FPD}$ ,  $V_{HY}$  and  $t_{REH}$  specified in their electrical characteristics use the improved 1-Wire front end.

# **Figure 17. Noise Suppression Scheme**



# **CRC GENERATION**

With the DS2422 there are two different types of CRCs (Cyclic Redundancy Checks). One CRC is an 8-bit type and is stored in the most significant byte of the 64-bit ROM. The bus master can compute a CRC value from the first 56 bits of the 64-bit ROM and compare it to the value stored within the DS2422 to determine if the ROM data has been received error-free. The equivalent polynomial function of this CRC is:  $X^8 + X^5 + X^4 + 1$ . This 8-bit CRC is received in the true (non-inverted) form. It is computed at the factory and lasered into the ROM.

The other CRC is a 16-bit type, generated according to the standardized CRC16-polynomial function  $x^{16} + x^{15} + x^2$ + 1. This CRC is used for error detection when reading register pages or the datalog memory using the Read Memory with CRC command and for fast verification of a data transfer when writing to or reading from the scratchpad. In contrast to the 8-bit CRC, the 16-bit CRC is always communicated in the inverted form. A CRCgenerator inside the DS2422 chip (Figure 18) will calculate a new 16-bit CRC as shown in the command flow chart of Figure 12. The bus master compares the CRC value read from the device to the one it calculates from the data

and decides whether to continue with an operation or to reread the portion of the data with the CRC error. With the initial pass through the Read Memory with CRC flow chart, the 16-bit CRC value is the result of shifting the command byte into the cleared CRC generator, followed by the 2 address bytes and the data bytes. The password is excluded from the CRC calculation. Subsequent passes through the Read Memory with CRC flow chart will generate a 16-bit CRC that is the result of clearing the CRC generator and then shifting in the data bytes.

With the Write Scratchpad command the CRC is generated by first clearing the CRC generator and then shifting in the command code, the Target Addresses TA1 and TA2 and all the data bytes. The DS2422 will transmit this CRC only if the data bytes written to the scratchpad include scratchpad ending offset 11111b. The data may start at any location within the scratchpad.

With the Read Scratchpad command the CRC is generated by first clearing the CRC generator and then shifting in the command code, the Target Addresses TA1 and TA2, the E/S byte, and the scratchpad data starting at the target address. The DS2422 will transmit this CRC only if the reading continues through the end of the scratchpad, regardless of the actual ending offset. For more information on generating CRC values see *Application Note 27*.









# **COMMAND-SPECIFIC 1-Wire COMMUNICATION PROTOCOL—LEGEND**



# **COMMAND-SPECIFIC 1-Wire COMMUNICATION PROTOCOL—COLOR CODES**

Master to slave  $\vert$  Slave to master

# **WRITE SCRATCHPAD, REACHING THE END OF THE SCRATCHPAD (CANNOT FAIL)**



PD  $\left|$  Select  $\left|$  WS  $\right|$  TA  $\left|$  <data to EOS>  $\left|$  CRC16\  $\right|$  FF loop

#### **READ SCRATCHPAD (CANNOT FAIL)**





DS2422

#### **FORCED CONVERSION**



To read the result and to verify success, read the addresses 020Ch to 020Fh (results) and the Device Samples Counter at address 0223h to 0225h. If the count has incremented, the command was executed successfully.

#### **START MISSION WITH PASSWORD**



To verify success, read the General Status Register at address 0215h. If MIP is 1 and MEMCLR is 0, the command was executed successfully.

# **STOP MISSION WITH PASSWORD**  $RST$  PD Select  $ST$  STP  $\leq$ PW/dummy> FFh FF loop

To verify success, read the General Status Register at address 0215h. If MIP is 0, the command was executed successfully.

#### **MISSION EXAMPLE: PREPARE AND START A NEW MISSION**

Assumption: The previous mission has been ended by using the Stop Mission command. Passwords are not enabled.

Starting a mission with the DS2422 requires three steps:

- Step 1: clear the data of the previous mission
- Step 2: write the setup data to register page 1
- Step 3: start the mission

# **STEP 1**

Clear the previous mission.

With only a single DS2422 connected to the bus master, the communication of step 1 looks like this:



# **STEP 2**

During the setup, the device needs to learn the following information:

- **Time and Date**
- Sample Rate
- **Alarm Thresholds**
- Alarm Controls (Response to Conditional Search)
- General Mission Parameters (e. g., channels to log and logging format, rollover, start mode)
- **Mission Start Delay**

The following data will setup the DS2422 for a mission that logs temperature using 8-bit format. Such a mission could last up to 56 days until the 8192-byte datalog memory is full.



With only a single DS2422 connected to the bus master, the communication of step 2 looks like this:





# **STEP 3**

Start the new mission.

With only a single DS2422 connected to the bus master, the communication of step 3 looks like this:



If step 3 was successful, the MIP bit in the General Status Register will be 1, the MEMCLR bit will be 0 and the mission start delay will count down.

# **PACKAGE INFORMATION**

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/DallasPackInfo**.)

This datasheet has been downloaded from:

[www.DatasheetCatalog.com](http://www.datasheetcatalog.com)

Datasheets for electronic components.