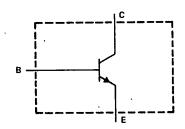
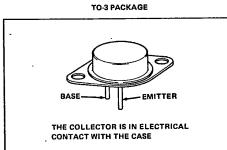
8961726 TEXAS INSTR (OPTO)

The second

62C 36571


D


2N3713, 2N3714, 2N3715, 2N3716 N-P-N SILICON POWER TRANSISTORS -33-13

FEBRUARY 1968 - REVISED OCTOBER 1984

- 150 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Min fhfe of 30 kHz
- Min f_T of 4 MHz
- Designed for Use in Power Amplifier and Switching Applications

device schematic

2N Devices

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

	2N3713	2N3714	2N3715	2N3716	
*Collector-base voltage	80 V	100 V	80 V	100 V	
*Collector-emitter voltage (I _B = 0)	60 V	80 V	60 V	80 V	
*Emitter-base voltage	7V				
*Continuous collector current	10 A				
Peak collector current (see Note 1)	16 A .				
*Continuous base current	4 A				
*Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	150 W				
Continuous device dissipation at (or below) 25°C free-air temperature (see Note 3)	4 W				
Lead temperature 1,6 mm (0.0625 inch) from case for 10 seconds	235°C				
*Safe operating areas at (or below) 25°C case temperature	See Figures 8 and 9				
*Operating junction and storage temperature range	− 65°C to 200°C				

NOTES: 1. This value applies for t_w = 0.3 ms, duty cycle ≤ 10%.
2. Derate linearly to 200°C case temperature at the rate of 0.855 W/°C.
3. Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/°C.

*JEDEC registered data.

Texas VI

POST OFFICE BOX 225012 . DALLAS, TEXAS 76265

2-3

D

8961726 TEXAS INSTR (OPTO)

62C 36572 7-33-13

2N3713, 2N3714, 2N3715, 2N3716 N-P-N SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		2N3713			2N3714				
				MIN	TYP	MAX	MIN	TYP	MAX	TIMU
V(BR)CEO	$I_C = 0.2 A$,		See Note 4	60			80			V
ICEO	$V_{CE} = 30 V$					0.7	\vdash			
	$V_{CE} = 40 V$		•				-		0.7	mA
	$V_{CE} = 80 V$					1	_			mA
^I CEV	$V_{CE} = 60 V$	$V_{BE} = -1.5 V$,	T _C = 150°C			10				
CEV	$V_{CE} = 100 V$	$V_{BE} = -1.5 V$		\dashv					1	
	$V_{CE} = 80 V$	$V_{BE} = -1.5 V$,	T _C = 150°C	\neg			-		10	l
[‡] EBO	$V_{EB} = 7V$,	IC = 0				1			1	mÁ
hFE	$V_{CE} = 2V$		See Notes 4 and 5	25		75	25		75	
"FE	V _{CE} = 2V,	IC = 3A,	See Notes 4 and 5	15			15			
	V _{CE} = 2V,	IC = 10 A,	See Notes 4 and 5	5			5			ł
VBE	V _{CE} = 2 V,	IC = 5A,		- 		2			2	
*BE	V _{CE} = 4 V.	IC = 10 A,	See Notes 4 and 5			4	-		4	٧
V _{CE(sat)}	$l_{B} = 0.5 A,$	IC = 5A,	See Notes 4 and 5			1			1	
*CE(sat)	I _B = 2 A,	IC = 10 A.	See Notes 4 and 5	+		4			<u>.</u>	- v
h _{fe}	V _{CE} = 10 V,	IC = 0.5 A,	f = 1 kHz	25		250	25		250	
[h _{fe}]	V _{CE} = 10 V,	IC = 0.5 A,	f = 1 MHz	4			4		230	
fhfe	V _{CE} = 10 V,	IC = 0.5 A,	See Note 6	30			30			kHz
Cobo	V _{CB} = 10 V,	IF = 0,	f = 100 kHz	+		250			250	pF

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS		2N3715			2N3716					
V				MIN	TYP	MAX	MIN	TYP	MAX	UNI
V _{(BR)CEO}	IC = 0.2 A,	ig = 0,	See Note 4	60			80			V
(CEO	$V_{CE} = 30 V$					0.7				_
	$V_{CE} = 40 V$,	lg = 0							0.7	m/
		$V_{BE} = -1.5 V$				1	 			
ICEV	$V_{CE} = 60 V$,	$V_{BE} = -1.5 V$,	T _C = 150°C			10	 			
-CEV		$V_{BE} = -1.5 V$	· · · · · · · · · · · · · · · · · · ·			-			1	mA
	V _{CE} = 80 V,	$V_{BE} = -1.5 V$,	T _C = 150°C	-			-		10	
^I EBO	$V_{EB} = 7V$,			-		1	 		1	mÄ
hpe	V _{CE} = 2 V,	IC = 1 A,	See Notes 4 and 5	50		150	50		150	IIIA
''FE	V _{CE} = 2V,	IC = 3A,		30			30		100	
	V _{CE} = 2 V,	IC = 10 A,		5			5			
VBE	V _{CE} = 2V,	I _C = 5 A,	See Notes 4 and 5	+ <u> </u>		1.8			1.8	
▲RE	V _{CE} = 4 V,	IC = 10 A,	See Notes 4 and 5	+-		4			4	٧
V	$l_{B} = 0.5 A$,	IC = 5A,	See Notes 4 and 5			- 1				
V _{CE(sat)}	I _B = 2A,	IC = 10 A,		┯		4			- 1	٧
h _{fe}	V _{CE} = 10 V,		f = 1 kHz	25		250	25			
h _{fe}		<u> </u>	f = 1 MHz	4		230	4		250	
fhfe		IC = 0.5 A,		30			30			
Cobo			f = 100 kHz	- 30			30			kHz
000	00 .007	·E	1 - 100 KHZ			250			250	рF

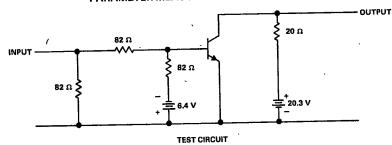
.4. These parameters must be measured using pulse techniques, t_W = 300 µs, duty cycle ≤ 2%.
.5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 1,6 mm (0.0625 inch) from the device body.
6. Infe is the frequency at which the magnitude of the small-signal forward current transfer is 0.707 of its low-frequency value. For these devices, the reference measurement is made at 1 kHz.

8961726 TEXAS INSTR (OPTO)

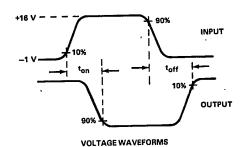
62C 36573

7-33-/3 2N3713, 2N3714, 2N3715, 2N3716 N-P-N SILICON POWER TRANSISTORS

thermal characteristics

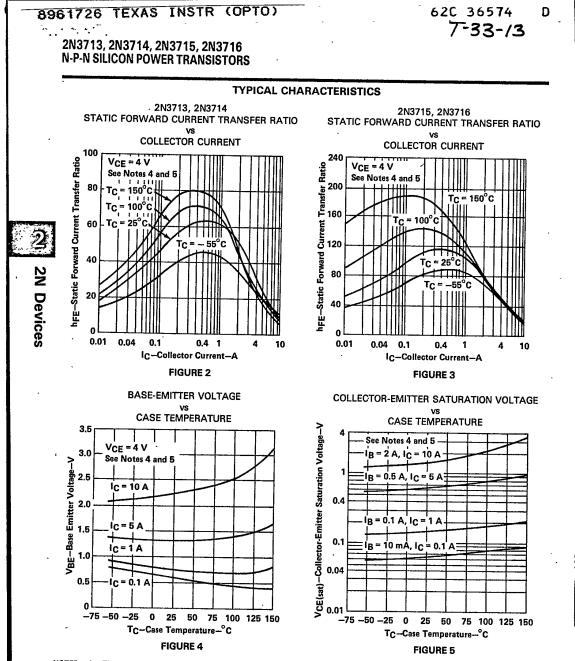

	 MIN	TYP	MAX	UNIT	١
PARAMETER	 		1.17	°C/W	1
R _θ JC		—	43.7	°C/W	١
RAIA	 				3

resistive-load switching characteristics at 25°C case temperature


DARAMETER	TEST CONDITIONS [†]	MIN TYP MAX	UNIT
PARAMETER	$I_{C} = 1 A$, $I_{B1} = 0.1 A$, $I_{B2} = -0.1 A$,	450	ns
ton		350	ns
toff	$V_{BE(off)} = -3.7 \text{ V}, R_L = 20 \Omega, See Figure 1$		<u> </u>

 $t_{Voltage}$ and current values shown are nominal; exact values vary slightly with transistor parameters.

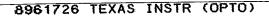
PARAMETER MEASUREMENT INFORMATION



NOTES: A. The input waveform is supplied by a generator with the following characteristics: $t_f \le 15 \text{ ns}$, $t_f \le 15 \text{ ns}$, $Z_{\text{Out}} = 50 \, \Omega$,

t_W = 10 μs, duty cycle ≤ 2%.
 B. Waveforms are monitored on an oscilloscope with the following characteristics: t_r ≤ 15 ns, R_{in} ≥ 10 MΩ, C_{in} ≤ 11.5 pF.
 C. Resistors must be noninductive types.
 D. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1. RESISTIVE-LOAD SWITCHING



NOTES: 4. These parameters must be measured using pulse techniques, t_W = 300 µs, duty cycle ≤ 2%.
 These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 1,6 mm (0.0625 inch) from the device body.

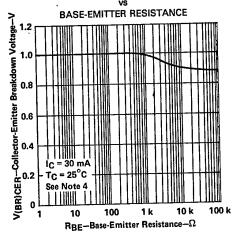
INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

2-6

1283

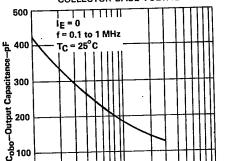
62C 36575

7-33-/3


2N3713, 2N3714, 2N3715, 2N3716 N-P-N SILICON POWER TRANSISTORS

TYPICAL CHARACTERISTICS

Capacitance


NORMALIZED COLLECTOR-EMITTER

BREAKDOWN VOLTAGE

COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE

COLLECTOR-BASE VOLTAGE

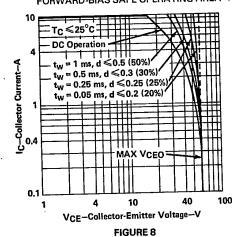
D

Devices

V_{CB}-Collector-Base Voltage-V FIGURE 7

7 10

20


40

NOTE 4: These parameters must be measured using pulse techniques, $t_W = 300 \, \mu s$, duty cycle $\leq 2\%$.

MAXIMUM SAFE OPERATING AREA

2N3713, 2N3715 FORWARD-BIAS SAFE OPERATING AREA

FIGURE 6

2N3714, 2N3716 FORWARD-BIAS SAFE OPERATING AREA

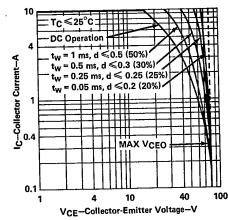


FIGURE 9

TEXAS INSTRUMENTS

1283

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

2-7

8961726 TEXAS INSTR (OPTO)

62C 36576

ア-33-/3

D

2N3713, 2N3714, 2N3715, 2N3716 N-P-N SILICON POWER TRANSISTORS

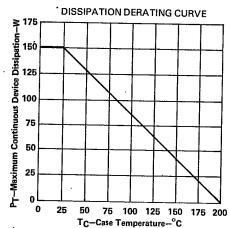


FIGURE 10

0.50 (50%) Duty cycle K-Peak Power Coefficient 0.25 (25%) $1 - e^{\left(-t_W/d\tau\right)}$ t_W = Pulse duration in ms Duty cycle ratio τ = Thermal time constant = 4.4 ms 0.02 0.04 0.1 0.4 1 10 20 tw-Pulse Duration-ms

PEAK POWER COEFFICIENT CURVE-

FIGURE 11

2N Devices

INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.

Texas Instruments

http://www.ti.com

This file is the datasheet for the following electronic components:

2N3713 - http://www.ti.com/product/2n3713?HQS=TI-null-null-dscatalog-df-pf-null-wwe

2N3714 - http://www.ti.com/product/2n3714?HQS=TI-null-null-dscatalog-df-pf-null-wwe

2N3715 - http://www.ti.com/product/2n3715?HQS=TI-null-null-dscatalog-df-pf-null-wwe

2N3716 - http://www.ti.com/product/2n3716?HQS=TI-null-null-dscatalog-df-pf-null-wwe